Manifold Testing Example

The engineers at Cummins design and test their engines to withstand real-world conditions, ranging from military deployments to heavy-duty industrial sites. Cummins engineers want to know exactly how their parts are deforming under the combination of thermal and mechanical loads. This means they have the need to perform their tests with the engines running… hot!

Figure 1. Photograph of engine manifold.

Because of the complex strain fields produced under these conditions, conventional strain gages cannot satisfy Cummins’ requirements. FEA simulations are also limited, due to the uncertain boundary conditions and complexity of the loading. With the VIC-3D™ System, Cummins engineers were able to obtain detailed three-dimensional strain measurements. These measurements are made under real loading conditions while the engine is running. In addition, the VIC-3D™ System is easy to set up and can measure both small parts and large assemblies. Care must be taken when imaging hot specimens with DIC, because heat waves can severely bias data. However, a simple solution to this potential bias is to utilize a fan to move and mix the hot and cool air, which is easily integrated.

Paul Gloeckner, senior research engineer at Cummins, explains the usefulness of the VIC-3D™ System as follows: “This tool allows us to make measurements that were previously not possible. It has also allowed us to considerably reduce the time required for these tests.”

Figure 2. VIC-3D strain data of manifold.

Correlated Solutions now supports select IR cameras, which can be integrated with any quasi-static VIC-3D system. Temperature data from IR cameras can now be calibrated and synchronized with the DIC system, producing very robust and more informative data.

* Data Courtesy of Cummins


View the VIC-3D page for more information about this technology.

Find out more about our IR system.

Download the VIC-3D flyer.

Please contact or visit our Contact Us page for your quotation today.

Back to Top